2.6. Аминокислоты пищевых продуктов, их классификация

Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации амино- и карбоксильных групп, входящих в состав радикалов. Другими словами, они являются амфотерными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы доноров).

Все аминокислоты в зависимости от структуры разделены на несколько групп:

Ациклические. Моноаминомонокарбоновые аминокислоты имеют в своем составе одну аминную и одну карбоксильную группы, в водном растворе они нейтральны. Некоторые из них имеют общие структурные особенности, что позволяет рассматривать их вместе:

1. Глицин и аланин. Глицин (гликокол или аминоуксусная к-та) является оптически неактивным – это единственная аминокислота, не имеющая энатиомеров. Глицин участвует в образовании нуклеиновых и желчных к-т, гема, необходим для обезвреживания в печени токсичных продуктов. Аланин используется организмом в различных процессах обмена углеводов и энергии. Его изомер β-аланин является составной частью витамина пантотеновой к-ты, коэнзима А (КоА), экстрактивных веществ мышц.

2. Серин и треонин. Они относятся к группе гидрооксикислот, т.к. имеют гидроксильную группу. Серин входит в состав различных ферментов, основного белка молока – казеина, а также в состав многих липопротеинов. Треонин участвует в биосинтезе белка, являясь незаменимой аминокислотой.

3. Цистеин и метионин. Аминокислоты, имеющие в составе атом серы. Значение цистеина определяется наличием в ее составе сульфгидрильной ( – SH) группы, которая придает ему способность легко окисляться и защищать организм о веществ с высокой окислительной способностью (при лучевом поражении, отравлении фосфором). Метионин характеризуется наличием легко подвижной метильной группы, использующейся для синтеза важных соединений в организме (холина, креатина, тимина, адреналина и др.)

4. Валин, лейцин и изолейцин. Представляют собой разветвленные аминокислоты, которые активно участвуют в обмене веществ и не синтезируются в организме.

Моноаминодикарбоновые аминокислоты имеют одну аминную и две карбоксильные группы и в водном растворе дают кислую реакцию. К ним относятся аспарагиновая и глутаминовая кислоты, аспарагин и глутамин. Они входят в состав тормозных медиаторов нервной системы.

Диаминомонокарбоновые аминокислоты в водном растворе имеют щелочную реакцию за сет наличия двух аминных групп. Относящийся к ним лизин необходим для синтеза гистонов а также в ряд ферментов. Аргинин участвует в синтезе мочевины, креатина.

Циклические. Эти аминокислоты имеют в своем составе ароматическое или гетероциклическое ядро и, как правило, не синтезируется в организме человека и должны поступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так, фенилаланин служит основным источником синтеза тирозина – предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

К настоящему времени установлены последовательности аминокислот для нескольких тысяч различных белков. Запись структуры белков в виде развернутых структурных формул громоздка и не наглядна. Поэтому обычно используется сокращенная форма записи – трехбуквенная или однобуквенная.

Из двадцати основных α- аминокислот строятся белки, однако остальные, достаточно разнообразные аминокислоты образуются из этих 20 аминокислотных остатков уже в составе белковой молекулы.

По химическому строению аминокислоты подразделяются:

-Алифатические – глицин (Гли), аланин (Ала), валин (Вал), лейцин (Лей), изолейцин (Илей);

-Оксикислоты – серин (Сер), треанин (Тре);

-Дикарбоновые – аспарагин (Асп), глутамин (Глу), аспарагиновая кислота (Аск), глутаминовая кислота (Глк);

-Двуосновные – лизин (Лиз), гистидин (Гис), аргинин (Арг);

-Ароматические – фениналанин (Фен), тирозин (Тир), триптофан (Три);

-Серосодержащие – цистеин (Цис), метионин (Мет).

По биохимической роли:

-глюкогенные – через ряд химических превращений поступают на путь гликолиза (окисления глюкозы) – Гли, Ала, Тре, Вал, Аск, Глк, Арг, Гис, Мет.

-кетогенные – участвуют в образовании кетоновых тел - Лей, Илей, Тир, Фен

По заменимости:

-Незаменимые – не синтезируются в организме – Гис, Иле, Лей, Лиз, Мет, Фен, Тре, Три, Вал, а у молодняка Арг, Гис.

-Заменимые – остальные.

-За счет наличия в молекуле АК одновременно аминной и карбоксильной групп этим соединениям присущи кислотно-основные свойства.

Известны аминокислоты, которые не входят в состав белков. Таких аминокислот свыше 150. Они встречаются в клетках в свободном или связанном виде, но никогда не обнаруживаются в составе белков. γАминомасляную кислоту (ГАМК) можно, например, обнаружить только в нервной ткани. Она выполняет функцию ингибитора нейромедиаторов, играющих важную роль в центральной нервной системе.

Аминокислоты отличаются друг от друга типом аминокислотного остатка Rn. Таким образом молекула каждой аминокислоты содержит специфическую часть (боковую группу - Rn) и неспецифическую часть. Существует около 20 различных аминокислот. Аминокислоты являются строительными блоками (мономерами), из которых строятся все белковые молекулы (полимеры). Основные 20 аминокислот : аланин (ала, ala, A) аргинин (арг, arg, R), aспарагин (асн, asn, N), аспартат (асп, asp, D), валин (вал, val, V), гистидин (гис, his, H), глицин (гли, gly, G), глутамат (глу, glu, E),. глутамин (глн, gln, Q) изолейцин , (илей,ile, I), лейцин , (лей, leu, L), лизин , (лиз, lys, K), метионин , (мет, met, M), пролин , (про, pro, P), серин (сер, ser, S), тирозин , (тир, tyr, Y), треонин , (тре, thr, T), триптофан (три, trp, W), фенилаланин (фен, phe, F), цистеин (цис, cys, C). Свободные аминокислоты составляют примерно 0.5% от веса клетки, входящие в состав белков - около 15%.

Заменимые аминокислоты могут синтезироваться в организме. Однако за счет этого эндогенного синтеза обеспечиваются только минимальные потребности организма, в связи с чем удовлетворение потребности организма в заменимых аминокислотах должно в основном осуществляться за счет поступления их в составе белков пищи.

К заменимым аминокислотам относятся аланин, аспарагин, аспарагиновая кислота, глицин, (гликокол), глютамин, глютаминовая кислота; норлейцин, оксипролин, оксиглютаминовая кислота, пролин, серии, тирозин, цистеин, цистин. Заменимые аминокислоты выполняют в организме весьма важные функции, причем некоторые из них играют физиологическую роль не меньшую, чем незаменимые аминокислоты. Таковы глютаминовая кислота, цистин, тирозин и др.

Поскольку заменимые аминокислоты могут синтезироваться в организме, определение их потребности затруднено. Ориентировочно средняя потребность взрослого человека в основных заменимых аминокислотах может быть принята следующей (в г/сут): цистина 2—3, тирозина 3—4, аланина 3, серина 3, глютаминовой кислоты 16, аспарагиновой кислоты 6, пролина 5, гликокола (глицин) 3.

Заменимые аминокислоты могут превращаться друг в друга. Все эти взаимопреобразовывания осуществляются через стадию глутаминовой или аспарагиновой кислот. Преобладают процессы, связанные с образованием глутаминовой кислоты.

Теоретически можно употреблять в пищу только глутаминовую кислоту. Остальные аминокислоты будут образовываться из нее сами. В организме есть некоторый запас глутаминовой кислоты для компенсации катаболических состояний путем синтеза аминокислот, образующихся из этого запаса.

Существует теория, согласно которой незаменимые аминокислоты тоже способны взаимопревращаться. При этом незаменимые аминокислоты могут превращаться в заменимые, а заменимые аминокислоты не обладают способностью к превращению в незаменимые.

Уникальность глутаминовой и аспарагиновой аминокислот как раз в том, что для взаимного превращения друг в друга все заменимые аминокислоты должны превратиться в начале в глутаминовую или аспарагиновую кислоту. Поэтому и говорят о том, что они играют интегрирующую роль в азотистом обмене. Однако эта интегрирующая роль не исчерпывается лишь компенсацией недополученных с пищей аминокислот. Существует еще феномен "перераспределения азота в организме". При нехватке белка в каком-то одном органе вследствие заболевания или гиперфункции (необходимость рабочей гипертрофии) происходит перераспределение азота: белок "изымается" из одних внутренних органов и направляется в другие. Наиболее частым источником легкомобилизуемого белка являются транспортные белки крови. Когда их запас исчерпан, используются белки селезенки, печени, почек, кишечника. Белки сердца и мозга не "тратятся" никогда, поскольку это самые важные органы организма.

При больших физических нагрузках и одновременном ограничении белка в рационе происходит расходование белка внутренних органов на построение мышечной ткани скелетных мышц и сердца. У спортсменов высокой квалификации могут появляться заболевания печени и почек из-за феномена, азотистого перераспределения. Отсюда понятно, насколько необходимо получать достаточно большое количество белка с пищей.

При перераспределении в организме азота все заменимые аминокислоты превращаются вначале в глютаминовую и аспарагиновую кислоты, а затем уже в те, которых не хватает в рабочем органе. Ведущая роль в процессе перераспределения азота принадлежит глутаминовой кислоте. Достаточно сказать, что глутаминовая кислота (глутамин) составляет 25% от общего количества всех (заменимых и незаменимых) аминокислот в организме. Хотя глутаминовая кислота и считается классической заменимой аминокислотой, в последние годы выяснено, что для отдельных тканей человеческого организма глутаминовая кислота является незаменимой и ничем другим (никакой другой аминокислотой) не может быть восполнима.

В организме существует своеобразный "фонд" глутаминовой кислоты. Глутаминовая кислота расходуется в первую очередь там, где она нужнее всего. В последнее время, однако, было выяснено, что глутаминовая кислота способна превращаться и в некоторые незаменимые аминокислоты, в частности в гистидин и аргинин. Гистидин активно участвует в обмене веществ. Он принимает участие в синтезе карнозина и анзерина - безбелковых азотистых веществ мышечной ткани. Карнозин выполняет антиоксидантные функции, способствует стабилизации клеточных мембран мышечных волокон. Карнозин не способен восстановить работоспособность уже утомленной мышцы, однако он активно противодействует развитию в мышце утомления, значительно повышая тем самым работоспособность.